- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 33 (2023), pp. 367-398.
Published online: 2023-03
Cited by
- BibTex
- RIS
- TXT
We introduce a fast solver for the phase field crystal (PFC) and functionalized Cahn-Hilliard (FCH) equations with periodic boundary conditions on a rectangular domain that features the preconditioned Nesterov’s accelerated gradient descent (PAGD) method. We discretize these problems with a Fourier collocation method in space, and employ various second-order schemes in time. We observe a significant speedup with this solver when compared to the preconditioned gradient descent (PGD) method. With the PAGD solver, fully implicit, second-order-in-time schemes are not only feasible to solve the PFC and FCH equations, but also do so more efficiently than some semi-implicit schemes in some cases where accuracy issues are taken into account. Benchmark computations of four different schemes for the PFC and FCH equations are conducted and the results indicate that, for the FCH experiments, the fully implicit schemes (midpoint rule and BDF2 equipped with the PAGD as a nonlinear time marching solver) perform better than their IMEX versions in terms of computational cost needed to achieve a certain precision. For the PFC, the results are not as conclusive as in the FCH experiments, which, we believe, is due to the fact that the nonlinearity in the PFC is milder nature compared to the FCH equation. We also discuss some practical matters in applying the PAGD. We introduce an averaged Newton preconditioner and a sweeping-friction strategy as heuristic ways to choose good preconditioner parameters. The sweeping-friction strategy exhibits almost as good a performance as the case of the best manually tuned parameters.
}, issn = {1991-7120}, doi = {https://doi.org/ 10.4208/cicp.OA-2022-0117}, url = {http://global-sci.org/intro/article_detail/cicp/21492.html} }We introduce a fast solver for the phase field crystal (PFC) and functionalized Cahn-Hilliard (FCH) equations with periodic boundary conditions on a rectangular domain that features the preconditioned Nesterov’s accelerated gradient descent (PAGD) method. We discretize these problems with a Fourier collocation method in space, and employ various second-order schemes in time. We observe a significant speedup with this solver when compared to the preconditioned gradient descent (PGD) method. With the PAGD solver, fully implicit, second-order-in-time schemes are not only feasible to solve the PFC and FCH equations, but also do so more efficiently than some semi-implicit schemes in some cases where accuracy issues are taken into account. Benchmark computations of four different schemes for the PFC and FCH equations are conducted and the results indicate that, for the FCH experiments, the fully implicit schemes (midpoint rule and BDF2 equipped with the PAGD as a nonlinear time marching solver) perform better than their IMEX versions in terms of computational cost needed to achieve a certain precision. For the PFC, the results are not as conclusive as in the FCH experiments, which, we believe, is due to the fact that the nonlinearity in the PFC is milder nature compared to the FCH equation. We also discuss some practical matters in applying the PAGD. We introduce an averaged Newton preconditioner and a sweeping-friction strategy as heuristic ways to choose good preconditioner parameters. The sweeping-friction strategy exhibits almost as good a performance as the case of the best manually tuned parameters.