- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 33 (2023), pp. 22-38.
Published online: 2023-02
Cited by
- BibTex
- RIS
- TXT
The effect of the thickness of the dielectric boundary layer that connects a material of refractive index $n_1$ to another of index $n_2$ is considered for the propagation of an electromagnetic pulse. A qubit lattice algorithm (QLA), which consists of a specially chosen non-commuting sequence of collision and streaming operators acting on a basis set of qubits, is theoretically determined that recovers the Maxwell equations to second-order in a small parameter $\epsilon.$ For very thin but continuous boundary layer the scattering properties of the pulse mimics that found from the Fresnel discontinuous jump conditions for a plane wave - except that the transmission to incident amplitudes are augmented by a factor of $\sqrt{ n_2/n_1}.$ As the boundary layer becomes thicker one finds deviations away from the discontinuous Fresnel conditions and eventually one approaches the expected WKB limit. However there is found a small but unusual dip in part of the transmitted pulse that persists in time. Computationally, the QLA simulations still recover the solutions to Maxwell equations even when this parameter $\epsilon → 1.$ On examining the pulse propagation in medium $n_1 , \epsilon$ corresponds to the dimensionless speed of the pulse (in lattice units).
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0034}, url = {http://global-sci.org/intro/article_detail/cicp/21423.html} }The effect of the thickness of the dielectric boundary layer that connects a material of refractive index $n_1$ to another of index $n_2$ is considered for the propagation of an electromagnetic pulse. A qubit lattice algorithm (QLA), which consists of a specially chosen non-commuting sequence of collision and streaming operators acting on a basis set of qubits, is theoretically determined that recovers the Maxwell equations to second-order in a small parameter $\epsilon.$ For very thin but continuous boundary layer the scattering properties of the pulse mimics that found from the Fresnel discontinuous jump conditions for a plane wave - except that the transmission to incident amplitudes are augmented by a factor of $\sqrt{ n_2/n_1}.$ As the boundary layer becomes thicker one finds deviations away from the discontinuous Fresnel conditions and eventually one approaches the expected WKB limit. However there is found a small but unusual dip in part of the transmitted pulse that persists in time. Computationally, the QLA simulations still recover the solutions to Maxwell equations even when this parameter $\epsilon → 1.$ On examining the pulse propagation in medium $n_1 , \epsilon$ corresponds to the dimensionless speed of the pulse (in lattice units).