- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 32 (2022), pp. 1437-1473.
Published online: 2023-01
Cited by
- BibTex
- RIS
- TXT
In this paper, we correct the finite volume element methods for diffusion equations on general triangular and quadrilateral meshes. First, we decompose the numerical fluxes of original schemes into two parts, i.e., the principal part with a two-point flux structure and the defective part. And then with the help of local extremums, we transform the original numerical fluxes into nonlinear numerical fluxes, which can be expressed as a nonlinear combination of two-point fluxes. It is proved that the corrected schemes satisfy the discrete strong extremum principle without restrictions on the diffusion coefficient and meshes. Numerical results indicate that the corrected schemes not only satisfy the discrete strong extremum principle but also preserve the convergence order of the original finite volume element methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0130}, url = {http://global-sci.org/intro/article_detail/cicp/21369.html} }In this paper, we correct the finite volume element methods for diffusion equations on general triangular and quadrilateral meshes. First, we decompose the numerical fluxes of original schemes into two parts, i.e., the principal part with a two-point flux structure and the defective part. And then with the help of local extremums, we transform the original numerical fluxes into nonlinear numerical fluxes, which can be expressed as a nonlinear combination of two-point fluxes. It is proved that the corrected schemes satisfy the discrete strong extremum principle without restrictions on the diffusion coefficient and meshes. Numerical results indicate that the corrected schemes not only satisfy the discrete strong extremum principle but also preserve the convergence order of the original finite volume element methods.