- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 32 (2022), pp. 1156-1178.
Published online: 2022-10
Cited by
- BibTex
- RIS
- TXT
This paper presents a pseudopotential lattice Boltzmann analysis to show the deficiency of previous pseudopotential models, i.e., inconsistency between equilibrium velocity and mixture velocity. To rectify this problem, there are two strategies: decoupling relaxation time and kinematic viscosity or introducing a system mixture relaxation time. Then, we constructed two modified models: a two-relaxation-time (TRT) scheme and a triple-relaxation-time (TriRT) scheme to decouple the relaxation time and kinematic viscosity. Meanwhile, inspired by the idea of a system mixture relaxation time, we developed three mixture models under different collision schemes, viz. mix-SRT, mix-TRT, and mix-TriRT models. Afterwards, we derived the advection-diffusion equation for the multicomponent system and derived the mutual diffusivity in a binary mixture. Finally, we conducted several numerical simulations to validate the analysis on these models. The numerical results show that these models can obtain smaller spurious currents than previous models and have a wider range for the accessible viscosity ratio with fourth-order isotropy. Compared to previous models, present models avoid complex matrix operations and only fourth-order isotropy is required. The increased simplicity and higher computational efficiency of these models make them easy to apply to engineering and industrial applications.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0209}, url = {http://global-sci.org/intro/article_detail/cicp/21142.html} }This paper presents a pseudopotential lattice Boltzmann analysis to show the deficiency of previous pseudopotential models, i.e., inconsistency between equilibrium velocity and mixture velocity. To rectify this problem, there are two strategies: decoupling relaxation time and kinematic viscosity or introducing a system mixture relaxation time. Then, we constructed two modified models: a two-relaxation-time (TRT) scheme and a triple-relaxation-time (TriRT) scheme to decouple the relaxation time and kinematic viscosity. Meanwhile, inspired by the idea of a system mixture relaxation time, we developed three mixture models under different collision schemes, viz. mix-SRT, mix-TRT, and mix-TriRT models. Afterwards, we derived the advection-diffusion equation for the multicomponent system and derived the mutual diffusivity in a binary mixture. Finally, we conducted several numerical simulations to validate the analysis on these models. The numerical results show that these models can obtain smaller spurious currents than previous models and have a wider range for the accessible viscosity ratio with fourth-order isotropy. Compared to previous models, present models avoid complex matrix operations and only fourth-order isotropy is required. The increased simplicity and higher computational efficiency of these models make them easy to apply to engineering and industrial applications.