- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 32 (2022), pp. 1129-1155.
Published online: 2022-10
Cited by
- BibTex
- RIS
- TXT
We propose Poisson integrators for the numerical integration of separable Poisson systems. We analyze three situations in which Poisson systems are separated in three ways and Poisson integrators can be constructed by using the splitting method. Numerical results show that the Poisson integrators outperform the higher order non-Poisson integrators in terms of long-term energy conservation and computational cost. The Poisson integrators are also shown to be more efficient than the canonicalized sympletic methods of the same order.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0144}, url = {http://global-sci.org/intro/article_detail/cicp/21141.html} }We propose Poisson integrators for the numerical integration of separable Poisson systems. We analyze three situations in which Poisson systems are separated in three ways and Poisson integrators can be constructed by using the splitting method. Numerical results show that the Poisson integrators outperform the higher order non-Poisson integrators in terms of long-term energy conservation and computational cost. The Poisson integrators are also shown to be more efficient than the canonicalized sympletic methods of the same order.