- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 32 (2022), pp. 951-979.
Published online: 2022-10
Cited by
- BibTex
- RIS
- TXT
In this paper, we present a high-order unified gas-kinetic scheme (UGKS) using the weighted essentially non-oscillatory with adaptive-order (WENO-AO) method for spatial reconstruction and the two-stage fourth-order scheme for time evolution. Since the UGKS updates both the macroscopic flow variables and microscopic distribution function, and provides an adaptive flux function by combining the equilibrium and non-equilibrium parts, it is possible to take separate treatment of the equilibrium and non-equilibrium calculation in the UGKS for the development of high-order scheme. Considering the fact that high-order techniques are commonly applied in the continuum flow simulation with complex structures, and that the rarefied flow structure is usually smooth in the physical space, we apply the high-order techniques in the equilibrium part of the UGKS for the capturing of macroscopic flow evolution, and retain the calculation of distribution function as a second-order method, so that a balance of computational cost and numerical accuracy could be well achieved. The HUGKS has been validated by several numerical test cases, including sine-wave accuracy test, Sod-shock tube, Couette, oscillating Couette, lid-driven cavity and oscillating cavity flow. It is shown that the current method preserves the multiscale property of the original UGKS and obtains accurate solutions in the near continuum regimes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0113}, url = {http://global-sci.org/intro/article_detail/cicp/21135.html} }In this paper, we present a high-order unified gas-kinetic scheme (UGKS) using the weighted essentially non-oscillatory with adaptive-order (WENO-AO) method for spatial reconstruction and the two-stage fourth-order scheme for time evolution. Since the UGKS updates both the macroscopic flow variables and microscopic distribution function, and provides an adaptive flux function by combining the equilibrium and non-equilibrium parts, it is possible to take separate treatment of the equilibrium and non-equilibrium calculation in the UGKS for the development of high-order scheme. Considering the fact that high-order techniques are commonly applied in the continuum flow simulation with complex structures, and that the rarefied flow structure is usually smooth in the physical space, we apply the high-order techniques in the equilibrium part of the UGKS for the capturing of macroscopic flow evolution, and retain the calculation of distribution function as a second-order method, so that a balance of computational cost and numerical accuracy could be well achieved. The HUGKS has been validated by several numerical test cases, including sine-wave accuracy test, Sod-shock tube, Couette, oscillating Couette, lid-driven cavity and oscillating cavity flow. It is shown that the current method preserves the multiscale property of the original UGKS and obtains accurate solutions in the near continuum regimes.