- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 32 (2022), pp. 401-423.
Published online: 2022-08
Cited by
- BibTex
- RIS
- TXT
In this work, we propose an adaptive learning approach based on temporal normalizing flows for solving time-dependent Fokker-Planck (TFP) equations. It is well known that solutions of such equations are probability density functions, and thus our approach relies on modelling the target solutions with the temporal normalizing flows. The temporal normalizing flow is then trained based on the TFP loss function, without requiring any labeled data. Being a machine learning scheme, the proposed approach is mesh-free and can be easily applied to high dimensional problems. We present a variety of test problems to show the effectiveness of the learning approach.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2022-0090}, url = {http://global-sci.org/intro/article_detail/cicp/20863.html} }In this work, we propose an adaptive learning approach based on temporal normalizing flows for solving time-dependent Fokker-Planck (TFP) equations. It is well known that solutions of such equations are probability density functions, and thus our approach relies on modelling the target solutions with the temporal normalizing flows. The temporal normalizing flow is then trained based on the TFP loss function, without requiring any labeled data. Being a machine learning scheme, the proposed approach is mesh-free and can be easily applied to high dimensional problems. We present a variety of test problems to show the effectiveness of the learning approach.