- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 32 (2022), pp. 222-258.
Published online: 2022-07
Cited by
- BibTex
- RIS
- TXT
Although interest in numerical approximations of the water wave equation grows in recent years, the lack of rigorous analysis of its time discretization inhibits the design of more efficient algorithms. In practice of water wave simulations, the trade-off between efficiency and stability has been a challenging problem. Thus to shed light on the stability condition for simulations of water waves, we focus on a model simplified from the water wave equation of infinite depth. This model preserves two main properties of the water wave equation: non-locality and hyperbolicity. For the constant coefficient case, we conduct systematic stability studies of the fully discrete approximation of such systems with the Fourier spectral approximation in space and general Runge-Kutta methods in time. As a result, an optimal time discretization strategy is provided in the form of a modified CFL condition, i.e. $∆t = \mathcal{O}(\sqrt{∆x}).$ Meanwhile, the energy stable property is established for certain explicit Runge-Kutta methods. This CFL condition solves the problem of efficiency and stability: it allows numerical schemes to stay stable while resolves oscillations at the lowest requirement, which only produces acceptable computational load. In the variable coefficient case, the convergence of the semi-discrete approximation of it is presented, which naturally connects to the water wave equation. Analogue of these results for the water wave equation of finite depth is also discussed. To validate these theoretic observation, extensive numerical tests have been performed to verify the stability conditions. Simulations of the simplified hyperbolic model in the high frequency regime and the water wave equation are also provided.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0049}, url = {http://global-sci.org/intro/article_detail/cicp/20793.html} }Although interest in numerical approximations of the water wave equation grows in recent years, the lack of rigorous analysis of its time discretization inhibits the design of more efficient algorithms. In practice of water wave simulations, the trade-off between efficiency and stability has been a challenging problem. Thus to shed light on the stability condition for simulations of water waves, we focus on a model simplified from the water wave equation of infinite depth. This model preserves two main properties of the water wave equation: non-locality and hyperbolicity. For the constant coefficient case, we conduct systematic stability studies of the fully discrete approximation of such systems with the Fourier spectral approximation in space and general Runge-Kutta methods in time. As a result, an optimal time discretization strategy is provided in the form of a modified CFL condition, i.e. $∆t = \mathcal{O}(\sqrt{∆x}).$ Meanwhile, the energy stable property is established for certain explicit Runge-Kutta methods. This CFL condition solves the problem of efficiency and stability: it allows numerical schemes to stay stable while resolves oscillations at the lowest requirement, which only produces acceptable computational load. In the variable coefficient case, the convergence of the semi-discrete approximation of it is presented, which naturally connects to the water wave equation. Analogue of these results for the water wave equation of finite depth is also discussed. To validate these theoretic observation, extensive numerical tests have been performed to verify the stability conditions. Simulations of the simplified hyperbolic model in the high frequency regime and the water wave equation are also provided.