- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 1585-1635.
Published online: 2022-05
Cited by
- BibTex
- RIS
- TXT
This study aimed to specialise a directional $\mathcal{H}^2 (\mathcal{D}\mathcal{H}^2)$ compression to matrices arising from the discontinuous Galerkin (DG) discretisation of the hypersingular equation in acoustics. The significant finding is an algorithm that takes a DG stiffness matrix and finds a near-optimal $\mathcal{D}\mathcal{H}^2$ approximation for low and high-frequency problems. We introduced the necessary special optimisations to make this algorithm more efficient in the case of a DG stiffness matrix. Moreover, an automatic parameter tuning strategy makes it easy to use and versatile. Numerical comparisons with a classical Boundary Element Method (BEM) show that a DG scheme combined with a $\mathcal{D}\mathcal{H}^2$ gives better computational efficiency than a classical BEM in the case of high-order finite elements and $hp$ heterogeneous meshes. The results indicate that DG is suitable for an auto-adaptive context in integral equations.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0241}, url = {http://global-sci.org/intro/article_detail/cicp/20516.html} }This study aimed to specialise a directional $\mathcal{H}^2 (\mathcal{D}\mathcal{H}^2)$ compression to matrices arising from the discontinuous Galerkin (DG) discretisation of the hypersingular equation in acoustics. The significant finding is an algorithm that takes a DG stiffness matrix and finds a near-optimal $\mathcal{D}\mathcal{H}^2$ approximation for low and high-frequency problems. We introduced the necessary special optimisations to make this algorithm more efficient in the case of a DG stiffness matrix. Moreover, an automatic parameter tuning strategy makes it easy to use and versatile. Numerical comparisons with a classical Boundary Element Method (BEM) show that a DG scheme combined with a $\mathcal{D}\mathcal{H}^2$ gives better computational efficiency than a classical BEM in the case of high-order finite elements and $hp$ heterogeneous meshes. The results indicate that DG is suitable for an auto-adaptive context in integral equations.