- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 1561-1584.
Published online: 2022-05
Cited by
- BibTex
- RIS
- TXT
Extrapolation cascadic multigrid (EXCMG) method with conjugate gradient smoother is very efficient for solving the elliptic boundary value problems with linear finite element discretization. However, it is not trivial to generalize the vertex-centred EXCMG method to cell-centered finite volume (FV) methods for diffusion equations with strongly discontinuous and anisotropic coefficients, since a non-nested hierarchy of grid nodes are used in the cell-centered discretization. For cell-centered FV schemes, the vertex values (auxiliary unknowns) need to be approximated by cell-centered ones (primary unknowns). One of the novelties is to propose a new gradient transfer (GT) method of interpolating vertex unknowns with cell-centered ones, which is easy to implement and applicable to general diffusion tensors. The main novelty of this paper is to design a multigrid prolongation operator based on the GT method and splitting extrapolation method, and then propose a cell-centered EXCMG method with BiCGStab smoother for solving the large linear system resulting from linear FV discretization of diffusion equations with strongly discontinuous and anisotropic coefficients. Numerical experiments are presented to demonstrate the high efficiency of the proposed method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0185}, url = {http://global-sci.org/intro/article_detail/cicp/20515.html} }Extrapolation cascadic multigrid (EXCMG) method with conjugate gradient smoother is very efficient for solving the elliptic boundary value problems with linear finite element discretization. However, it is not trivial to generalize the vertex-centred EXCMG method to cell-centered finite volume (FV) methods for diffusion equations with strongly discontinuous and anisotropic coefficients, since a non-nested hierarchy of grid nodes are used in the cell-centered discretization. For cell-centered FV schemes, the vertex values (auxiliary unknowns) need to be approximated by cell-centered ones (primary unknowns). One of the novelties is to propose a new gradient transfer (GT) method of interpolating vertex unknowns with cell-centered ones, which is easy to implement and applicable to general diffusion tensors. The main novelty of this paper is to design a multigrid prolongation operator based on the GT method and splitting extrapolation method, and then propose a cell-centered EXCMG method with BiCGStab smoother for solving the large linear system resulting from linear FV discretization of diffusion equations with strongly discontinuous and anisotropic coefficients. Numerical experiments are presented to demonstrate the high efficiency of the proposed method.