- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 1489-1524.
Published online: 2022-05
Cited by
- BibTex
- RIS
- TXT
We apply the monotonicity correction to the finite element method for the anisotropic diffusion problems, including linear and quadratic finite elements on triangular meshes. When formulating the finite element schemes, we need to calculate the integrals on every triangular element, whose results are the linear combination of the two-point pairs. Then we decompose the integral results into the main and remaining parts according to coefficient signs of two-point pairs. We apply the nonlinear correction to the positive remaining parts and move the negative remaining parts to the right side of the finite element equations. Finally, the original stiffness matrix can be transformed into a nonlinear M-matrix, and the corrected schemes have the positivity-preserving property. We also give the monotonicity correction to the time derivative term for the time-dependent problems. Numerical experiments show that the corrected finite element method has monotonicity and maintains the convergence order of the original schemes in $H^1$-norm and $L^2$-norm, respectively.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0197}, url = {http://global-sci.org/intro/article_detail/cicp/20512.html} }We apply the monotonicity correction to the finite element method for the anisotropic diffusion problems, including linear and quadratic finite elements on triangular meshes. When formulating the finite element schemes, we need to calculate the integrals on every triangular element, whose results are the linear combination of the two-point pairs. Then we decompose the integral results into the main and remaining parts according to coefficient signs of two-point pairs. We apply the nonlinear correction to the positive remaining parts and move the negative remaining parts to the right side of the finite element equations. Finally, the original stiffness matrix can be transformed into a nonlinear M-matrix, and the corrected schemes have the positivity-preserving property. We also give the monotonicity correction to the time derivative term for the time-dependent problems. Numerical experiments show that the corrected finite element method has monotonicity and maintains the convergence order of the original schemes in $H^1$-norm and $L^2$-norm, respectively.