- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 1402-1433.
Published online: 2022-05
Cited by
- BibTex
- RIS
- TXT
We develop a second-order continuous finite element method for solving the static Eikonal equation. It is based on the vanishing viscosity approach with a homotopy method for solving the discretized nonlinear system. More specifically, the homotopy method is utilized to decrease the viscosity coefficient gradually, while Newton’s method is applied to compute the solution for each viscosity coefficient. Newton’s method alone converges for just big enough viscosity coefficients on very coarse grids and for simple 1D examples, but the proposed method is much more robust and guarantees the convergence of the nonlinear solver for all viscosity coefficients and for all examples over all grids. Numerical experiments from 1D to 3D are presented to confirm the second-order convergence and the effectiveness of the proposed method on both structured or unstructured meshes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0164}, url = {http://global-sci.org/intro/article_detail/cicp/20509.html} }We develop a second-order continuous finite element method for solving the static Eikonal equation. It is based on the vanishing viscosity approach with a homotopy method for solving the discretized nonlinear system. More specifically, the homotopy method is utilized to decrease the viscosity coefficient gradually, while Newton’s method is applied to compute the solution for each viscosity coefficient. Newton’s method alone converges for just big enough viscosity coefficients on very coarse grids and for simple 1D examples, but the proposed method is much more robust and guarantees the convergence of the nonlinear solver for all viscosity coefficients and for all examples over all grids. Numerical experiments from 1D to 3D are presented to confirm the second-order convergence and the effectiveness of the proposed method on both structured or unstructured meshes.