- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 1317-1340.
Published online: 2022-05
Cited by
- BibTex
- RIS
- TXT
We propose an efficient iterative convolution thresholding method for the formulation of flow networks where the fluid is modeled by the Darcy–Stokes flow with the presence of volume sources. The method is based on the minimization of the dissipation power in the fluid region with a Darcy term. The flow network is represented by its characteristic function and the energy is approximated under this representation. The minimization problem can then be approximately solved by alternating: 1) solving a Brinkman equation to model the Darcy–Stokes flow and 2) updating the characteristic function by a simple convolution and thresholding step. The proposed method is simple and easy to implement. We prove mathematically that the iterative method has the total energy decaying property. Numerical experiments demonstrate the performance and robustness of the proposed method and interesting structures are observed.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0234}, url = {http://global-sci.org/intro/article_detail/cicp/20506.html} }We propose an efficient iterative convolution thresholding method for the formulation of flow networks where the fluid is modeled by the Darcy–Stokes flow with the presence of volume sources. The method is based on the minimization of the dissipation power in the fluid region with a Darcy term. The flow network is represented by its characteristic function and the energy is approximated under this representation. The minimization problem can then be approximately solved by alternating: 1) solving a Brinkman equation to model the Darcy–Stokes flow and 2) updating the characteristic function by a simple convolution and thresholding step. The proposed method is simple and easy to implement. We prove mathematically that the iterative method has the total energy decaying property. Numerical experiments demonstrate the performance and robustness of the proposed method and interesting structures are observed.