- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 1180-1214.
Published online: 2022-03
Cited by
- BibTex
- RIS
- TXT
In this paper, we consider the numerics of the dispersion-managed Korteweg-de Vries (DM-KdV) equation for describing wave propagations in inhomogeneous media. The DM-KdV equation contains a variable dispersion map with discontinuity, which makes the solution non-smooth in time. We formally analyze the convergence order reduction problems of some popular numerical methods including finite difference and time-splitting for solving the DM-KdV equation, where a necessary constraint on the time step has been identified. Then, two exponential-type dispersion-map integrators up to second order accuracy are derived, which are efficiently incorporated with the Fourier pseudospectral discretization in space, and they can converge regardless of the discontinuity and the step size. Numerical comparisons show the advantage of the proposed methods with the application to solitary wave dynamics and extension to the fast & strong dispersion-management regime.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0216}, url = {http://global-sci.org/intro/article_detail/cicp/20381.html} }In this paper, we consider the numerics of the dispersion-managed Korteweg-de Vries (DM-KdV) equation for describing wave propagations in inhomogeneous media. The DM-KdV equation contains a variable dispersion map with discontinuity, which makes the solution non-smooth in time. We formally analyze the convergence order reduction problems of some popular numerical methods including finite difference and time-splitting for solving the DM-KdV equation, where a necessary constraint on the time step has been identified. Then, two exponential-type dispersion-map integrators up to second order accuracy are derived, which are efficiently incorporated with the Fourier pseudospectral discretization in space, and they can converge regardless of the discontinuity and the step size. Numerical comparisons show the advantage of the proposed methods with the application to solitary wave dynamics and extension to the fast & strong dispersion-management regime.