- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 997-1019.
Published online: 2022-03
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
We consider in this paper random batch particle methods for efficiently solving the homogeneous Landau equation in plasma physics. The methods are stochastic variations of the particle methods proposed by Carrillo et al. [J. Comput. Phys.: X 7: 100066, 2020] using the random batch strategy. The collisions only take place inside the small but randomly selected batches so that the computational cost is reduced to $\mathcal{O}(N)$ per time step. Meanwhile, our methods can preserve the conservation of mass, momentum, energy and the decay of entropy. Several numerical examples are performed to validate our methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0200}, url = {http://global-sci.org/intro/article_detail/cicp/20374.html} }We consider in this paper random batch particle methods for efficiently solving the homogeneous Landau equation in plasma physics. The methods are stochastic variations of the particle methods proposed by Carrillo et al. [J. Comput. Phys.: X 7: 100066, 2020] using the random batch strategy. The collisions only take place inside the small but randomly selected batches so that the computational cost is reduced to $\mathcal{O}(N)$ per time step. Meanwhile, our methods can preserve the conservation of mass, momentum, energy and the decay of entropy. Several numerical examples are performed to validate our methods.