- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 947-965.
Published online: 2022-03
Cited by
- BibTex
- RIS
- TXT
We derive and numerically solve a surface active nematodynamics model. We validate the numerical approach on a sphere and analyse the influence of hydrodynamics on the oscillatory motion of topological defects. For ellipsoidal surfaces the influence of geometric forces on these motion patterns is addressed by taking into account the effects of intrinsic as well as extrinsic curvature contributions. The numerical experiments demonstrate the stronger coupling with geometric properties if extrinsic curvature contributions are present and provide a possibility to tune flow and defect motion by surface properties.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0206}, url = {http://global-sci.org/intro/article_detail/cicp/20304.html} }We derive and numerically solve a surface active nematodynamics model. We validate the numerical approach on a sphere and analyse the influence of hydrodynamics on the oscillatory motion of topological defects. For ellipsoidal surfaces the influence of geometric forces on these motion patterns is addressed by taking into account the effects of intrinsic as well as extrinsic curvature contributions. The numerical experiments demonstrate the stronger coupling with geometric properties if extrinsic curvature contributions are present and provide a possibility to tune flow and defect motion by surface properties.