- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 771-815.
Published online: 2022-03
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a high-order accurate discontinuous Galerkin (DG) method for the compressible Euler equations under gravitational fields on unstructured meshes. The scheme preserves a general hydrostatic equilibrium state and provably guarantees the positivity of density and pressure at the same time. Comparing with the work on the well-balanced scheme for Euler equations with gravitation on rectangular meshes, the extension to triangular meshes is conceptually plausible but highly nontrivial. We first introduce a special way to recover the equilibrium state and then design a group of novel variables at the interface of two adjacent cells, which plays an important role in the well-balanced and positivity-preserving properties. One main challenge is that the well-balanced schemes may not have the weak positivity property. In order to achieve the well-balanced and positivity-preserving properties simultaneously while maintaining high-order accuracy, we carefully design DG spatial discretization with well-balanced numerical fluxes and suitable source term approximation. For the ideal gas, we prove that the resulting well-balanced scheme, coupled with strong stability preserving time discretizations, satisfies a weak positivity property. A simple existing limiter can be applied to enforce the positivity-preserving property, without losing high-order accuracy and conservation. Extensive one- and two-dimensional numerical examples demonstrate the desired properties of the proposed scheme, as well as its high resolution and robustness.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0126}, url = {http://global-sci.org/intro/article_detail/cicp/20298.html} }In this paper, we propose a high-order accurate discontinuous Galerkin (DG) method for the compressible Euler equations under gravitational fields on unstructured meshes. The scheme preserves a general hydrostatic equilibrium state and provably guarantees the positivity of density and pressure at the same time. Comparing with the work on the well-balanced scheme for Euler equations with gravitation on rectangular meshes, the extension to triangular meshes is conceptually plausible but highly nontrivial. We first introduce a special way to recover the equilibrium state and then design a group of novel variables at the interface of two adjacent cells, which plays an important role in the well-balanced and positivity-preserving properties. One main challenge is that the well-balanced schemes may not have the weak positivity property. In order to achieve the well-balanced and positivity-preserving properties simultaneously while maintaining high-order accuracy, we carefully design DG spatial discretization with well-balanced numerical fluxes and suitable source term approximation. For the ideal gas, we prove that the resulting well-balanced scheme, coupled with strong stability preserving time discretizations, satisfies a weak positivity property. A simple existing limiter can be applied to enforce the positivity-preserving property, without losing high-order accuracy and conservation. Extensive one- and two-dimensional numerical examples demonstrate the desired properties of the proposed scheme, as well as its high resolution and robustness.