- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 593-625.
Published online: 2022-01
Cited by
- BibTex
- RIS
- TXT
In this paper, a novel mixed wavelet-learning method is developed for predicting macroscopic effective heat transfer conductivities of braided composite materials with heterogeneous thermal conductivity. This innovative methodology integrates respective superiorities of multi-scale modeling, wavelet transform and neural networks together. By the aid of asymptotic homogenization method (AHM), off-line multi-scale modeling is accomplished for establishing the material database with high-dimensional and highly-complex mappings. The multi-scale material database and the wavelet-learning strategy ease the on-line training of neural networks, and enable us to efficiently build relatively simple networks that have an essentially increasing capacity and resisting noise for approximating the high-complexity mappings. Moreover, it should be emphasized that the wavelet-learning strategy can not only extract essential data characteristics from the material database, but also achieve a tremendous reduction in input data of neural networks. The numerical experiments performed using multiple 3D braided composite models verify the excellent performance of the presented mixed approach. The numerical results demonstrate that the mixed wavelet-learning methodology is a robust method for computing the macroscopic effective heat transfer conductivities with distinct heterogeneity patterns. The presented method can enormously decrease the computational time, and can be further expanded into estimating macroscopic effective mechanical properties of braided composites.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0110}, url = {http://global-sci.org/intro/article_detail/cicp/20216.html} }In this paper, a novel mixed wavelet-learning method is developed for predicting macroscopic effective heat transfer conductivities of braided composite materials with heterogeneous thermal conductivity. This innovative methodology integrates respective superiorities of multi-scale modeling, wavelet transform and neural networks together. By the aid of asymptotic homogenization method (AHM), off-line multi-scale modeling is accomplished for establishing the material database with high-dimensional and highly-complex mappings. The multi-scale material database and the wavelet-learning strategy ease the on-line training of neural networks, and enable us to efficiently build relatively simple networks that have an essentially increasing capacity and resisting noise for approximating the high-complexity mappings. Moreover, it should be emphasized that the wavelet-learning strategy can not only extract essential data characteristics from the material database, but also achieve a tremendous reduction in input data of neural networks. The numerical experiments performed using multiple 3D braided composite models verify the excellent performance of the presented mixed approach. The numerical results demonstrate that the mixed wavelet-learning methodology is a robust method for computing the macroscopic effective heat transfer conductivities with distinct heterogeneity patterns. The presented method can enormously decrease the computational time, and can be further expanded into estimating macroscopic effective mechanical properties of braided composites.