- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 495-515.
Published online: 2022-01
Cited by
- BibTex
- RIS
- TXT
Calculations of properties of materials require performing numerical integrals over the Brillouin zone (BZ). Integration points in density functional theory codes are uniformly spread over the BZ (despite integration error being concentrated in small regions of the BZ) and preserve symmetry to improve computational efficiency. Integration points over an irreducible Brillouin zone (IBZ), a rotationally distinct region of the BZ, do not have to preserve crystal symmetry for greater efficiency. This freedom allows the use of adaptive meshes with higher concentrations of points at locations of large error, resulting in improved algorithmic efficiency. We have created an algorithm for constructing an IBZ of any crystal structure in 2D and 3D. The algorithm uses convex hull and half-space representations for the BZ and IBZ to make many aspects of construction and symmetry reduction of the BZ trivial. The algorithm is simple, general, and available as open-source software.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0094}, url = {http://global-sci.org/intro/article_detail/cicp/20213.html} }Calculations of properties of materials require performing numerical integrals over the Brillouin zone (BZ). Integration points in density functional theory codes are uniformly spread over the BZ (despite integration error being concentrated in small regions of the BZ) and preserve symmetry to improve computational efficiency. Integration points over an irreducible Brillouin zone (IBZ), a rotationally distinct region of the BZ, do not have to preserve crystal symmetry for greater efficiency. This freedom allows the use of adaptive meshes with higher concentrations of points at locations of large error, resulting in improved algorithmic efficiency. We have created an algorithm for constructing an IBZ of any crystal structure in 2D and 3D. The algorithm uses convex hull and half-space representations for the BZ and IBZ to make many aspects of construction and symmetry reduction of the BZ trivial. The algorithm is simple, general, and available as open-source software.