- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 293-330.
Published online: 2021-12
Cited by
- BibTex
- RIS
- TXT
A positivity-preserving, conservative and entropic numerical scheme is presented for the three-temperature grey diffusion radiation hydrodynamics model. More precisely, the dissipation matrices of the colocalized semi-Lagrangian scheme are defined in order to enforce the entropy production on each species (electron or ion) proportionally to its mass as prescribed in [34]. A reformulation of the model is then considered to enable the derivation of a robust convex combination based scheme. This yields the positivity-preserving property at each sub-iteration of the algorithm while the total energy conservation is reached at convergence. Numerous pure hydrodynamics and radiation hydrodynamics test cases are carried out to assess the accuracy of the method. The question of the stability of the scheme is also addressed. It is observed that the present numerical method is particularly robust.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0059}, url = {http://global-sci.org/intro/article_detail/cicp/20025.html} }A positivity-preserving, conservative and entropic numerical scheme is presented for the three-temperature grey diffusion radiation hydrodynamics model. More precisely, the dissipation matrices of the colocalized semi-Lagrangian scheme are defined in order to enforce the entropy production on each species (electron or ion) proportionally to its mass as prescribed in [34]. A reformulation of the model is then considered to enable the derivation of a robust convex combination based scheme. This yields the positivity-preserving property at each sub-iteration of the algorithm while the total energy conservation is reached at convergence. Numerous pure hydrodynamics and radiation hydrodynamics test cases are carried out to assess the accuracy of the method. The question of the stability of the scheme is also addressed. It is observed that the present numerical method is particularly robust.