- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 31 (2022), pp. 60-93.
Published online: 2021-12
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper we propose and analyze a second order accurate numerical scheme for the Cahn-Hilliard equation with logarithmic Flory Huggins energy potential. A modified Crank-Nicolson approximation is applied to the logarithmic nonlinear term, while the expansive term is updated by an explicit second order Adams-Bashforth extrapolation, and an alternate temporal stencil is used for the surface diffusion term. A nonlinear artificial regularization term is added in the numerical scheme, which ensures the positivity-preserving property, i.e., the numerical value of the phase variable is always between -1 and 1 at a point-wise level. Furthermore, an unconditional energy stability of the numerical scheme is derived, leveraging the special form of the logarithmic approximation term. In addition, an optimal rate convergence estimate is provided for the proposed numerical scheme, with the help of linearized stability analysis. A few numerical results, including both the constant-mobility and solution-dependent mobility flows, are presented to validate the robustness of the proposed numerical scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0074}, url = {http://global-sci.org/intro/article_detail/cicp/20018.html} }In this paper we propose and analyze a second order accurate numerical scheme for the Cahn-Hilliard equation with logarithmic Flory Huggins energy potential. A modified Crank-Nicolson approximation is applied to the logarithmic nonlinear term, while the expansive term is updated by an explicit second order Adams-Bashforth extrapolation, and an alternate temporal stencil is used for the surface diffusion term. A nonlinear artificial regularization term is added in the numerical scheme, which ensures the positivity-preserving property, i.e., the numerical value of the phase variable is always between -1 and 1 at a point-wise level. Furthermore, an unconditional energy stability of the numerical scheme is derived, leveraging the special form of the logarithmic approximation term. In addition, an optimal rate convergence estimate is provided for the proposed numerical scheme, with the help of linearized stability analysis. A few numerical results, including both the constant-mobility and solution-dependent mobility flows, are presented to validate the robustness of the proposed numerical scheme.