- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 30 (2021), pp. 1529-1544.
Published online: 2021-10
Cited by
- BibTex
- RIS
- TXT
Flash calculation plays significant roles in petroleum and chemical industries. Since Michelsen proposed his milestone studies in 1982, through several decades of development, the current research interests on flash calculation have been shifted from accuracy to efficiency, but the ultimate goal remains the same; that is accurate determination of equilibrium phase amounts and compositions at a given condition. On the other hand, finding the transition route and its related saddle point is often crucial to understand the whole energy landscape of flash models, which would provide new insights for designing numerical algorithms or optimizing existing ones. In this study, an efficient numerical approach is developed by coupling the string method with the exponential time differencing (ETD) scheme to investigate the minimum energy paths and first-order saddle points of VT flash models with Peng-Robinson equation of state. As a promising alternative to the conventional approach, VT flash calculates phase equilibria under a new variable specification of volume and temperature. The Rosenbrock-type ETD scheme is used to reduce the computational difficulty caused by the high stiffness of the model systems. The proposed ETD-String method successfully calculates the minimum energy paths of single-component and two-component VT flash models with strong stiffness. Numerical results also show good feasibility and accuracy in calculation of equilibrium phase amounts and compositions.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2021-0024}, url = {http://global-sci.org/intro/article_detail/cicp/19939.html} }Flash calculation plays significant roles in petroleum and chemical industries. Since Michelsen proposed his milestone studies in 1982, through several decades of development, the current research interests on flash calculation have been shifted from accuracy to efficiency, but the ultimate goal remains the same; that is accurate determination of equilibrium phase amounts and compositions at a given condition. On the other hand, finding the transition route and its related saddle point is often crucial to understand the whole energy landscape of flash models, which would provide new insights for designing numerical algorithms or optimizing existing ones. In this study, an efficient numerical approach is developed by coupling the string method with the exponential time differencing (ETD) scheme to investigate the minimum energy paths and first-order saddle points of VT flash models with Peng-Robinson equation of state. As a promising alternative to the conventional approach, VT flash calculates phase equilibria under a new variable specification of volume and temperature. The Rosenbrock-type ETD scheme is used to reduce the computational difficulty caused by the high stiffness of the model systems. The proposed ETD-String method successfully calculates the minimum energy paths of single-component and two-component VT flash models with strong stiffness. Numerical results also show good feasibility and accuracy in calculation of equilibrium phase amounts and compositions.