- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 30 (2021), pp. 486-514.
Published online: 2021-05
Cited by
- BibTex
- RIS
- TXT
Ionic flow carries electrical signals for cells to communicate with each other. The permanent charge of an ion channel is a crucial protein structure for flow properties while boundary conditions play a role of the driving force. Their effects on flow properties have been analyzed via a quasi-one-dimensional Poisson-Nernst-Planck model for small and relatively large permanent charges. The analytical studies have led to the introduction of flux ratios that reflect permanent charge effects and have a universal property. The studies also show that the flux ratios have different behaviors for small and large permanent charges. However, the existing analytical techniques can reveal neither behaviors of flux ratios nor transitions between small and large permanent charges. In this work we present a numerical investigation on flux ratios to bridge between small and large permanent charges. Numerical results verify the analytical predictions for the two extremal regions. More significantly, emergence of non-trivial behaviors is detected as the permanent charge varies from small to large. In particular, saddle-node bifurcations of flux ratios are revealed, showing rich phenomena of permanent charge effects by the power of combining analytical and numerical techniques. An adaptive moving mesh finite element method is used in the numerical studies.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0057}, url = {http://global-sci.org/intro/article_detail/cicp/19122.html} }Ionic flow carries electrical signals for cells to communicate with each other. The permanent charge of an ion channel is a crucial protein structure for flow properties while boundary conditions play a role of the driving force. Their effects on flow properties have been analyzed via a quasi-one-dimensional Poisson-Nernst-Planck model for small and relatively large permanent charges. The analytical studies have led to the introduction of flux ratios that reflect permanent charge effects and have a universal property. The studies also show that the flux ratios have different behaviors for small and large permanent charges. However, the existing analytical techniques can reveal neither behaviors of flux ratios nor transitions between small and large permanent charges. In this work we present a numerical investigation on flux ratios to bridge between small and large permanent charges. Numerical results verify the analytical predictions for the two extremal regions. More significantly, emergence of non-trivial behaviors is detected as the permanent charge varies from small to large. In particular, saddle-node bifurcations of flux ratios are revealed, showing rich phenomena of permanent charge effects by the power of combining analytical and numerical techniques. An adaptive moving mesh finite element method is used in the numerical studies.