- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 30 (2021), pp. 423-447.
Published online: 2021-05
Cited by
- BibTex
- RIS
- TXT
In this paper, we investigate the ideal magnetohydrodynamic (MHD) equations with random inputs based on generalized polynomial chaos (gPC) stochastic Galerkin approximation. A special treatment with symmetrization is carried out for the gPC stochastic Galerkin method so that the resulting deterministic gPC Galerkin system is provably symmetric hyperbolic in the spatially one-dimensional case. We discretize the hyperbolic gPC Galerkin system with a high-order path-conservative finite volume weighted essentially non-oscillatory scheme in space and a third-order total variation diminishing Runge-Kutta method in time. The method is also extended to two spatial dimensions via the operator splitting technique. Several numerical examples are provided to illustrate the accuracy and effectiveness of the numerical scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0167}, url = {http://global-sci.org/intro/article_detail/cicp/19120.html} }In this paper, we investigate the ideal magnetohydrodynamic (MHD) equations with random inputs based on generalized polynomial chaos (gPC) stochastic Galerkin approximation. A special treatment with symmetrization is carried out for the gPC stochastic Galerkin method so that the resulting deterministic gPC Galerkin system is provably symmetric hyperbolic in the spatially one-dimensional case. We discretize the hyperbolic gPC Galerkin system with a high-order path-conservative finite volume weighted essentially non-oscillatory scheme in space and a third-order total variation diminishing Runge-Kutta method in time. The method is also extended to two spatial dimensions via the operator splitting technique. Several numerical examples are provided to illustrate the accuracy and effectiveness of the numerical scheme.