- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 30 (2021), pp. 288-320.
Published online: 2021-04
Cited by
- BibTex
- RIS
- TXT
We present a high-order discontinuous Galerkin (DG) scheme to solve the
system of helically symmetric Navier-Stokes equations which are discussed in [28].
In particular, we discretize the helically reduced Navier-Stokes equations emerging
from a reduction of the independent variables such that the remaining variables are: $t$, $r$, $ξ$ with $ξ=az+bϕ$, where $r$, $ϕ$, $z$ are common cylindrical coordinates and $t$ the
time. Beside this, all three velocity components are kept non-zero. A new non-singular
coordinate $η$ is introduced which ensures that a mapping of helical solutions into the
three-dimensional space is well defined. Using that, periodicity conditions for the
helical frame as well as uniqueness conditions at the centerline axis $r=0$ are derived. In
the sector near the axis of the computational domain a change of the polynomial basis
is implemented such that all physical quantities are uniquely defined at the centerline.
For the temporal integration, we present a semi-explicit scheme of third order
where the full spatial operator is split into a Stokes operator which is discretized
implicitly and an operator for the nonlinear terms which is treated explicitly. Computations are conducted for a cylindrical shell, excluding the centerline axis, and for
the full cylindrical domain, where the centerline is included. In all cases we obtain the
convergence rates of order $\mathcal{O}(h^{k+1})$ that are expected from DG theory.
In addition to the first DG discretization of the system of helically invariant Navier-Stokes equations, the treatment of the central axis, the resulting reduction of the DG
space, and the simultaneous use of a semi-explicit time stepper are of particular novelty.
We present a high-order discontinuous Galerkin (DG) scheme to solve the
system of helically symmetric Navier-Stokes equations which are discussed in [28].
In particular, we discretize the helically reduced Navier-Stokes equations emerging
from a reduction of the independent variables such that the remaining variables are: $t$, $r$, $ξ$ with $ξ=az+bϕ$, where $r$, $ϕ$, $z$ are common cylindrical coordinates and $t$ the
time. Beside this, all three velocity components are kept non-zero. A new non-singular
coordinate $η$ is introduced which ensures that a mapping of helical solutions into the
three-dimensional space is well defined. Using that, periodicity conditions for the
helical frame as well as uniqueness conditions at the centerline axis $r=0$ are derived. In
the sector near the axis of the computational domain a change of the polynomial basis
is implemented such that all physical quantities are uniquely defined at the centerline.
For the temporal integration, we present a semi-explicit scheme of third order
where the full spatial operator is split into a Stokes operator which is discretized
implicitly and an operator for the nonlinear terms which is treated explicitly. Computations are conducted for a cylindrical shell, excluding the centerline axis, and for
the full cylindrical domain, where the centerline is included. In all cases we obtain the
convergence rates of order $\mathcal{O}(h^{k+1})$ that are expected from DG theory.
In addition to the first DG discretization of the system of helically invariant Navier-Stokes equations, the treatment of the central axis, the resulting reduction of the DG
space, and the simultaneous use of a semi-explicit time stepper are of particular novelty.