- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 30 (2021), pp. 144-189.
Published online: 2021-04
Cited by
- BibTex
- RIS
- TXT
In this paper, a gas-kinetic unified algorithm (GKUA) is developed to investigate the non-equilibrium polyatomic gas flows covering various regimes. Based on the ellipsoidal statistical model with rotational energy excitation, the computable modelling equation is presented by unifying expressions on the molecular collision relaxing parameter and the local equilibrium distribution function. By constructing the corresponding conservative discrete velocity ordinate method for this model, the conservative properties during the collision procedure are preserved at the discrete level by the numerical method, decreasing the computational storage and time. Explicit and implicit lower-upper symmetric Gauss-Seidel schemes are constructed to solve the discrete hyperbolic conservation equations directly. Applying the new GKUA, some numerical examples are simulated, including the Sod Riemann problem, homogeneous flow rotational relaxation, normal shock structure, Fourier and Couette flows, supersonic flows past a circular cylinder, and hypersonic flow around a plate placed normally. The results obtained by the analytic, experimental, direct simulation Monte Carlo method, and other measurements in references are compared with the GKUA results, which are in good agreement, demonstrating the high accuracy of the present algorithm. Especially, some polyatomic gas non-equilibrium phenomena are observed and analysed by solving the Boltzmann-type velocity distribution function equation covering various flow regimes.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0122}, url = {http://global-sci.org/intro/article_detail/cicp/18877.html} }In this paper, a gas-kinetic unified algorithm (GKUA) is developed to investigate the non-equilibrium polyatomic gas flows covering various regimes. Based on the ellipsoidal statistical model with rotational energy excitation, the computable modelling equation is presented by unifying expressions on the molecular collision relaxing parameter and the local equilibrium distribution function. By constructing the corresponding conservative discrete velocity ordinate method for this model, the conservative properties during the collision procedure are preserved at the discrete level by the numerical method, decreasing the computational storage and time. Explicit and implicit lower-upper symmetric Gauss-Seidel schemes are constructed to solve the discrete hyperbolic conservation equations directly. Applying the new GKUA, some numerical examples are simulated, including the Sod Riemann problem, homogeneous flow rotational relaxation, normal shock structure, Fourier and Couette flows, supersonic flows past a circular cylinder, and hypersonic flow around a plate placed normally. The results obtained by the analytic, experimental, direct simulation Monte Carlo method, and other measurements in references are compared with the GKUA results, which are in good agreement, demonstrating the high accuracy of the present algorithm. Especially, some polyatomic gas non-equilibrium phenomena are observed and analysed by solving the Boltzmann-type velocity distribution function equation covering various flow regimes.