- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 1570-1582.
Published online: 2021-03
Cited by
- BibTex
- RIS
- TXT
Based on the recently-developed sum-of-exponential (SOE) approximation, in this article, we propose a fast algorithm to evaluate the one-dimensional convolution potential $φ(x)=K∗ρ=∫^1_{0}K(x−y)ρ(y)dy$ at (non)uniformly distributed target grid points {$x_i$}$^M_{i=1}$, where the kernel $K(x)$ might be singular at the origin and the source density function $ρ(x)$ is given on a source grid ${{{y_i}}}^N_{j=1}$ which can be different from the target grid. It achieves an optimal accuracy, inherited from the interpolation of the density $ρ(x)$, within $\mathcal{O}(M+N)$ operations. Using the kernel's SOE approximation $K_{ES}$, the potential is split into two integrals: the exponential convolution $φ_{ES}$=$K_{ES}∗ρ$ and the local correction integral $φ_{cor}=(K−K_{ES})∗ρ$. The exponential convolution is evaluated via the recurrence formula that is typical of the exponential function. The local correction integral is restricted to a small neighborhood of the target point where the kernel singularity is considered. Rigorous estimates of the optimal accuracy are provided. The algorithm is ideal for parallelization and favors easy extensions to complicated kernels. Extensive numerical results for different kernels are presented.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0116}, url = {http://global-sci.org/intro/article_detail/cicp/18731.html} }Based on the recently-developed sum-of-exponential (SOE) approximation, in this article, we propose a fast algorithm to evaluate the one-dimensional convolution potential $φ(x)=K∗ρ=∫^1_{0}K(x−y)ρ(y)dy$ at (non)uniformly distributed target grid points {$x_i$}$^M_{i=1}$, where the kernel $K(x)$ might be singular at the origin and the source density function $ρ(x)$ is given on a source grid ${{{y_i}}}^N_{j=1}$ which can be different from the target grid. It achieves an optimal accuracy, inherited from the interpolation of the density $ρ(x)$, within $\mathcal{O}(M+N)$ operations. Using the kernel's SOE approximation $K_{ES}$, the potential is split into two integrals: the exponential convolution $φ_{ES}$=$K_{ES}∗ρ$ and the local correction integral $φ_{cor}=(K−K_{ES})∗ρ$. The exponential convolution is evaluated via the recurrence formula that is typical of the exponential function. The local correction integral is restricted to a small neighborhood of the target point where the kernel singularity is considered. Rigorous estimates of the optimal accuracy are provided. The algorithm is ideal for parallelization and favors easy extensions to complicated kernels. Extensive numerical results for different kernels are presented.