- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 1541-1569.
Published online: 2021-03
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose an efficient mortar spectral element approximation scheme for full-potential electronic structure calculations. As a subsequent work of [24], the paper adopts a similar domain decomposition that the computational domain is first decomposed into a number of cuboid subdomains satisfying each nucleus is located in the center of one cube, in which a small ball element centered at the site of the nucleus is attached, and the remainder of the cube is further partitioned into six curvilinear hexahedrons. Specially designed Sobolev-orthogonal basis is adopted in each ball. Classic conforming spectral element approximations using mapped Jacobi polynomials are implemented on the curvilinear hexahedrons and the cuboid elements without nuclei. A mortar technique is applied to patch the different discretizations. Numerical experiments are carried out to demonstrate the efficiency of our scheme, especially the spectral convergence rates of the ground state approximations. Essentially the algorithm can be extended to general eigenvalue problems with the Coulomb singularities.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0020}, url = {http://global-sci.org/intro/article_detail/cicp/18728.html} }In this paper, we propose an efficient mortar spectral element approximation scheme for full-potential electronic structure calculations. As a subsequent work of [24], the paper adopts a similar domain decomposition that the computational domain is first decomposed into a number of cuboid subdomains satisfying each nucleus is located in the center of one cube, in which a small ball element centered at the site of the nucleus is attached, and the remainder of the cube is further partitioned into six curvilinear hexahedrons. Specially designed Sobolev-orthogonal basis is adopted in each ball. Classic conforming spectral element approximations using mapped Jacobi polynomials are implemented on the curvilinear hexahedrons and the cuboid elements without nuclei. A mortar technique is applied to patch the different discretizations. Numerical experiments are carried out to demonstrate the efficiency of our scheme, especially the spectral convergence rates of the ground state approximations. Essentially the algorithm can be extended to general eigenvalue problems with the Coulomb singularities.