- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 1059-1094.
Published online: 2021-02
Cited by
- BibTex
- RIS
- TXT
The Riemann solver with internal reconstruction (RSIR) of Carmouze et al. (2020) is investigated, revisited and improved for the Euler equations. In this reference, the RSIR approach has been developed to address the numerical resolution of the non-equilibrium two-phase flow model of Saurel et al. (2017). The main idea is to reconstruct two intermediate states from the knowledge of a simple and robust intercell state such as HLL, regardless the number of waves present in the Riemann problem. Such reconstruction improves significantly the accuracy of the HLL solution, preserves robustness and maintains stationary discontinuities. Consequently, when dealing with complex flow models, such as the aforementioned one, RSIR-type solvers are quite easy to derive compared to HLLC-type ones that may require a tedious analysis of the governing equations across the different waves. In the present contribution, the RSIR solver of Carmouze et al. (2020) is investigated, revisited and improved with the help of thermodynamic considerations, making a simple, accurate, robust and positive Riemann solver. It is also demonstrated that the RSIR solver is strictly equivalent to the HLLC solver of Toro et al. (1994) for the Euler equations when the Rankine-Hugoniot relations are used. In that sense, the RSIR approach recovers the HLLC solver in some limit as well as the HLL one in another limit and can be simplified at different levels when complex systems of equations are addressed. For the sake of clarity and simplicity, the derivations are performed in the context of the one-dimensional Euler equations. Comparisons and validations against the conventional HLLC solver and exact solutions are presented.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0083}, url = {http://global-sci.org/intro/article_detail/cicp/18646.html} }The Riemann solver with internal reconstruction (RSIR) of Carmouze et al. (2020) is investigated, revisited and improved for the Euler equations. In this reference, the RSIR approach has been developed to address the numerical resolution of the non-equilibrium two-phase flow model of Saurel et al. (2017). The main idea is to reconstruct two intermediate states from the knowledge of a simple and robust intercell state such as HLL, regardless the number of waves present in the Riemann problem. Such reconstruction improves significantly the accuracy of the HLL solution, preserves robustness and maintains stationary discontinuities. Consequently, when dealing with complex flow models, such as the aforementioned one, RSIR-type solvers are quite easy to derive compared to HLLC-type ones that may require a tedious analysis of the governing equations across the different waves. In the present contribution, the RSIR solver of Carmouze et al. (2020) is investigated, revisited and improved with the help of thermodynamic considerations, making a simple, accurate, robust and positive Riemann solver. It is also demonstrated that the RSIR solver is strictly equivalent to the HLLC solver of Toro et al. (1994) for the Euler equations when the Rankine-Hugoniot relations are used. In that sense, the RSIR approach recovers the HLLC solver in some limit as well as the HLL one in another limit and can be simplified at different levels when complex systems of equations are addressed. For the sake of clarity and simplicity, the derivations are performed in the context of the one-dimensional Euler equations. Comparisons and validations against the conventional HLLC solver and exact solutions are presented.