- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 1152-1185.
Published online: 2021-02
Cited by
- BibTex
- RIS
- TXT
Gaussian processes and other kernel-based methods are used extensively to construct approximations of multivariate data sets. The accuracy of these approximations is dependent on the data used. This paper presents a computationally efficient algorithm to greedily select training samples that minimize the weighted $L^p$ error of kernel-based approximations for a given number of data. The method successively generates nested samples, with the goal of minimizing the error in high probability regions of densities specified by users. The algorithm presented is extremely simple and can be implemented using existing pivoted Cholesky factorization methods. Training samples are generated in batches which allows training data to be evaluated (labeled) in parallel. For smooth kernels, the algorithm performs comparably with the greedy integrated variance design but has significantly lower complexity. Numerical experiments demonstrate the efficacy of the approach for bounded, unbounded, multi-modal and non-tensor product densities. We also show how to use the proposed algorithm to efficiently generate surrogates for inferring unknown model parameters from data using Bayesian inference.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0060}, url = {http://global-sci.org/intro/article_detail/cicp/18644.html} }Gaussian processes and other kernel-based methods are used extensively to construct approximations of multivariate data sets. The accuracy of these approximations is dependent on the data used. This paper presents a computationally efficient algorithm to greedily select training samples that minimize the weighted $L^p$ error of kernel-based approximations for a given number of data. The method successively generates nested samples, with the goal of minimizing the error in high probability regions of densities specified by users. The algorithm presented is extremely simple and can be implemented using existing pivoted Cholesky factorization methods. Training samples are generated in batches which allows training data to be evaluated (labeled) in parallel. For smooth kernels, the algorithm performs comparably with the greedy integrated variance design but has significantly lower complexity. Numerical experiments demonstrate the efficacy of the approach for bounded, unbounded, multi-modal and non-tensor product densities. We also show how to use the proposed algorithm to efficiently generate surrogates for inferring unknown model parameters from data using Bayesian inference.