- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 955-978.
Published online: 2021-01
Cited by
- BibTex
- RIS
- TXT
We present a solver of 3D two-fluid plasma model for the simulation of short-pulse laser interactions with plasma. This solver resolves the equations of the two-fluid plasma model with ideal gas closure. We also include the Bhatnagar-Gross-Krook collision model. Our solver is based on PseudoSpectral Time-Domain (PSTD) method to solve Maxwell's curl equations. We use a Strang splitting to integrate Euler equations with source term: while Euler equations are solved with a composite scheme mixing Lax-Friedrichs and Lax-Wendroff schemes, the source term is integrated with a fourth-order Runge-Kutta scheme. This two-fluid plasma model solver is simple to implement because it only relies on finite difference schemes and Fast Fourier Transforms. It does not require spatially staggered grids. The solver was tested against several well-known problems of plasma physics. Numerical simulations gave results in excellent agreement with analytical solutions or with previous results from the literature.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0117}, url = {http://global-sci.org/intro/article_detail/cicp/18572.html} }We present a solver of 3D two-fluid plasma model for the simulation of short-pulse laser interactions with plasma. This solver resolves the equations of the two-fluid plasma model with ideal gas closure. We also include the Bhatnagar-Gross-Krook collision model. Our solver is based on PseudoSpectral Time-Domain (PSTD) method to solve Maxwell's curl equations. We use a Strang splitting to integrate Euler equations with source term: while Euler equations are solved with a composite scheme mixing Lax-Friedrichs and Lax-Wendroff schemes, the source term is integrated with a fourth-order Runge-Kutta scheme. This two-fluid plasma model solver is simple to implement because it only relies on finite difference schemes and Fast Fourier Transforms. It does not require spatially staggered grids. The solver was tested against several well-known problems of plasma physics. Numerical simulations gave results in excellent agreement with analytical solutions or with previous results from the literature.