- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 905-929.
Published online: 2021-01
Cited by
- BibTex
- RIS
- TXT
In this paper we propose and analyze a (temporally) third order accurate backward differentiation formula (BDF) numerical scheme for the no-slope-selection (NSS) equation of the epitaxial thin film growth model, with Fourier pseudo-spectral discretization in space. The surface diffusion term is treated implicitly, while the nonlinear chemical potential is approximated by a third order explicit extrapolation formula for the sake of solvability. In addition, a third order accurate Douglas-Dupont regularization term, in the form of $−A∆t^2∆^2_N (u^{n+1}−u^n)$, is added in the numerical scheme. A careful energy stability estimate, combined with Fourier eigenvalue analysis, results in the energy stability in a modified version, and a theoretical justification of the coefficient $A$ becomes available. As a result of this energy stability analysis, a uniform in time bound of the numerical energy is obtained. And also, the optimal rate convergence analysis and error estimate are derived in details, in the $ℓ^∞(0,T;ℓ^2)∩ℓ^2(0,T;H^2_h)$ norm, with the help of a linearized estimate for the nonlinear error terms. Some numerical simulation results are presented to demonstrate the efficiency of the numerical scheme and the third order convergence. The long time simulation results for $ε = 0.02$ (up to $T = 3×10^5$) have indicated a logarithm law for the energy decay, as well as the power laws for growth of the surface roughness and the mound width. In particular, the power index for the surface roughness and the mound width growth, created by the third order numerical scheme, is more accurate than those produced by certain second order energy stable schemes in the existing literature.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0074}, url = {http://global-sci.org/intro/article_detail/cicp/18570.html} }In this paper we propose and analyze a (temporally) third order accurate backward differentiation formula (BDF) numerical scheme for the no-slope-selection (NSS) equation of the epitaxial thin film growth model, with Fourier pseudo-spectral discretization in space. The surface diffusion term is treated implicitly, while the nonlinear chemical potential is approximated by a third order explicit extrapolation formula for the sake of solvability. In addition, a third order accurate Douglas-Dupont regularization term, in the form of $−A∆t^2∆^2_N (u^{n+1}−u^n)$, is added in the numerical scheme. A careful energy stability estimate, combined with Fourier eigenvalue analysis, results in the energy stability in a modified version, and a theoretical justification of the coefficient $A$ becomes available. As a result of this energy stability analysis, a uniform in time bound of the numerical energy is obtained. And also, the optimal rate convergence analysis and error estimate are derived in details, in the $ℓ^∞(0,T;ℓ^2)∩ℓ^2(0,T;H^2_h)$ norm, with the help of a linearized estimate for the nonlinear error terms. Some numerical simulation results are presented to demonstrate the efficiency of the numerical scheme and the third order convergence. The long time simulation results for $ε = 0.02$ (up to $T = 3×10^5$) have indicated a logarithm law for the energy decay, as well as the power laws for growth of the surface roughness and the mound width. In particular, the power index for the surface roughness and the mound width growth, created by the third order numerical scheme, is more accurate than those produced by certain second order energy stable schemes in the existing literature.