- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 802-830.
Published online: 2021-01
Cited by
- BibTex
- RIS
- TXT
We propose a numerical integration methodology for stochastic Poisson systems (SPSs) of arbitrary dimensions and multiple noises with different Hamiltonians in diffusion coefficients, which can provide numerical schemes preserving both the Poisson structure and the Casimir functions of the SPSs, based on the Darboux-Lie theorem. We first transform the SPSs to their canonical form, the generalized stochastic Hamiltonian systems (SHSs), via canonical coordinate transformations found by solving certain PDEs defined by the Poisson brackets of the SPSs. An $α$-generating function approach with $α∈[0,1]$ is then constructed and used to create symplectic schemes for the SHSs, which are then transformed back by the inverse coordinate transformation to become stochastic Poisson integrators of the original SPSs. Numerical tests on a three-dimensional stochastic rigid body system illustrate the efficiency of the proposed methods.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0084}, url = {http://global-sci.org/intro/article_detail/cicp/18567.html} }We propose a numerical integration methodology for stochastic Poisson systems (SPSs) of arbitrary dimensions and multiple noises with different Hamiltonians in diffusion coefficients, which can provide numerical schemes preserving both the Poisson structure and the Casimir functions of the SPSs, based on the Darboux-Lie theorem. We first transform the SPSs to their canonical form, the generalized stochastic Hamiltonian systems (SHSs), via canonical coordinate transformations found by solving certain PDEs defined by the Poisson brackets of the SPSs. An $α$-generating function approach with $α∈[0,1]$ is then constructed and used to create symplectic schemes for the SHSs, which are then transformed back by the inverse coordinate transformation to become stochastic Poisson integrators of the original SPSs. Numerical tests on a three-dimensional stochastic rigid body system illustrate the efficiency of the proposed methods.