- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 628-648.
Published online: 2020-12
Cited by
- BibTex
- RIS
- TXT
Within the mode-coupling theory (MCT) of the glass transition, we reconsider the numerical schemes to evaluate the MCT functional. Here we propose nonuniform discretizations of the wave number, in contrast to the standard equidistant grid, in order to decrease the number of grid points without losing accuracy. We discuss in detail how the integration scheme on the new grids has to be modified from standard Riemann integration. We benchmark our approach by solving the MCT equations numerically for mono-disperse hard disks and hard spheres and by computing the critical packing fraction and the nonergodicity parameters. Our results show that significant improvements in performance can be obtained employing a nonuniform grid.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0125}, url = {http://global-sci.org/intro/article_detail/cicp/18479.html} }Within the mode-coupling theory (MCT) of the glass transition, we reconsider the numerical schemes to evaluate the MCT functional. Here we propose nonuniform discretizations of the wave number, in contrast to the standard equidistant grid, in order to decrease the number of grid points without losing accuracy. We discuss in detail how the integration scheme on the new grids has to be modified from standard Riemann integration. We benchmark our approach by solving the MCT equations numerically for mono-disperse hard disks and hard spheres and by computing the critical packing fraction and the nonergodicity parameters. Our results show that significant improvements in performance can be obtained employing a nonuniform grid.