- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 399-419.
Published online: 2020-12
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose accurate numerical boundary conditions for atomic simulations of twin boundary. The heterogeneity of the lattice structure induces physical reflection across the twin boundary. When numerical boundary and the twin boundary coincide, the goal is to reproduce the correct amount of physical reflection. In particular, we consider waves periodic in the direction parallel to the twin boundary and reduce the problem into a complex-valued chain motion. Using Laplace transform, we design time history kernel (THK) treatment. We further design matching boundary conditions (MBC) by reproducing physical reflection at long wave limit and a specific wave number. Reflection analysis and numerical tests demonstrate the effectiveness of the proposed THK and MBC treatments.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0070}, url = {http://global-sci.org/intro/article_detail/cicp/18471.html} }In this paper, we propose accurate numerical boundary conditions for atomic simulations of twin boundary. The heterogeneity of the lattice structure induces physical reflection across the twin boundary. When numerical boundary and the twin boundary coincide, the goal is to reproduce the correct amount of physical reflection. In particular, we consider waves periodic in the direction parallel to the twin boundary and reduce the problem into a complex-valued chain motion. Using Laplace transform, we design time history kernel (THK) treatment. We further design matching boundary conditions (MBC) by reproducing physical reflection at long wave limit and a specific wave number. Reflection analysis and numerical tests demonstrate the effectiveness of the proposed THK and MBC treatments.