- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 357-398.
Published online: 2020-12
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose and test a novel diagonal sweeping domain decomposition method (DDM) with source transfer for solving the high-frequency Helmholtz equation in $\mathbb{R}^n$. In the method the computational domain is partitioned into overlapping checkerboard subdomains for source transfer with the perfectly matched layer (PML) technique, then a set of diagonal sweeps over the subdomains are specially designed to solve the system efficiently. The method improves the additive overlapping DDM [43] and the L-sweeps method [50] by employing a more efficient subdomain solving order. We show that the method achieves the exact solution of the global PML problem with $2^n$ sweeps in the constant medium case. Although the sweeping usually implies sequential subdomain solves, the number of sequential steps required for each sweep in the method is only proportional to the $n$-th root of the number of subdomains when the domain decomposition is quasi-uniform with respect to all directions, thus it is very suitable for parallel computing of the Helmholtz problem with multiple right-hand sides through the pipeline processing. Extensive numerical experiments in two and three dimensions are presented to demonstrate the effectiveness and efficiency of the proposed method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0169}, url = {http://global-sci.org/intro/article_detail/cicp/18469.html} }In this paper, we propose and test a novel diagonal sweeping domain decomposition method (DDM) with source transfer for solving the high-frequency Helmholtz equation in $\mathbb{R}^n$. In the method the computational domain is partitioned into overlapping checkerboard subdomains for source transfer with the perfectly matched layer (PML) technique, then a set of diagonal sweeps over the subdomains are specially designed to solve the system efficiently. The method improves the additive overlapping DDM [43] and the L-sweeps method [50] by employing a more efficient subdomain solving order. We show that the method achieves the exact solution of the global PML problem with $2^n$ sweeps in the constant medium case. Although the sweeping usually implies sequential subdomain solves, the number of sequential steps required for each sweep in the method is only proportional to the $n$-th root of the number of subdomains when the domain decomposition is quasi-uniform with respect to all directions, thus it is very suitable for parallel computing of the Helmholtz problem with multiple right-hand sides through the pipeline processing. Extensive numerical experiments in two and three dimensions are presented to demonstrate the effectiveness and efficiency of the proposed method.