- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 319-356.
Published online: 2020-12
Cited by
- BibTex
- RIS
- TXT
This article deals with the efficient and accurate computation of the electrostatic forces between charged, spherical dielectric particles undergoing mutual polarisation. We use the spectral Galerkin boundary integral equation framework developed by Lindgren et al. (J. Comput. Phys. 371 (2018): 712-731) and subsequently analysed in two earlier contributions of the authors to propose a linear scaling in cost algorithm for the computation of the approximate forces. We establish exponential convergence of the method and derive error estimates for the approximate forces that do not explicitly depend on the number of dielectric particles $N$. Consequently, the proposed method requires only $\mathcal{O}(N) $ operations to compute the electrostatic forces acting on $N$ dielectric particles up to any given and fixed relative error.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0090}, url = {http://global-sci.org/intro/article_detail/cicp/18468.html} }This article deals with the efficient and accurate computation of the electrostatic forces between charged, spherical dielectric particles undergoing mutual polarisation. We use the spectral Galerkin boundary integral equation framework developed by Lindgren et al. (J. Comput. Phys. 371 (2018): 712-731) and subsequently analysed in two earlier contributions of the authors to propose a linear scaling in cost algorithm for the computation of the approximate forces. We establish exponential convergence of the method and derive error estimates for the approximate forces that do not explicitly depend on the number of dielectric particles $N$. Consequently, the proposed method requires only $\mathcal{O}(N) $ operations to compute the electrostatic forces acting on $N$ dielectric particles up to any given and fixed relative error.