- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 29 (2021), pp. 111-127.
Published online: 2020-11
Cited by
- BibTex
- RIS
- TXT
The simulation of Rayleigh waves is important in a variety of geophysical applications. The computational challenge is the fact that very fine mesh is necessary as the waves are concentrated at the free surface and decay exponentially away from the free surface. To overcome this challenge and to develop a robust high order scheme for the simulation of Rayleigh waves, we develop a mortar discontinuous Galerkin method with staggered hybridization. The use of the mortar technique allows one to use fine mesh in only a local region near the free surface, and use coarse mesh in most of the domain. This approach reduces the computational cost significantly. The staggered hybridization allows the preservation of the strong symmetry of the stress tensor without complicated construction of basis functions. In particular, the basis functions are piecewise polynomial without any continuity requirement, and the coupling of the basis functions is performed by using carefully chosen hybridized variables. The resulting scheme is explicit in time, and only local saddle point system is solved for each time step. We will present several benchmark problems to demonstrate the performance of the proposed method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0034}, url = {http://global-sci.org/intro/article_detail/cicp/18424.html} }The simulation of Rayleigh waves is important in a variety of geophysical applications. The computational challenge is the fact that very fine mesh is necessary as the waves are concentrated at the free surface and decay exponentially away from the free surface. To overcome this challenge and to develop a robust high order scheme for the simulation of Rayleigh waves, we develop a mortar discontinuous Galerkin method with staggered hybridization. The use of the mortar technique allows one to use fine mesh in only a local region near the free surface, and use coarse mesh in most of the domain. This approach reduces the computational cost significantly. The staggered hybridization allows the preservation of the strong symmetry of the stress tensor without complicated construction of basis functions. In particular, the basis functions are piecewise polynomial without any continuity requirement, and the coupling of the basis functions is performed by using carefully chosen hybridized variables. The resulting scheme is explicit in time, and only local saddle point system is solved for each time step. We will present several benchmark problems to demonstrate the performance of the proposed method.