- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 1838-1885.
Published online: 2020-11
Cited by
- BibTex
- RIS
- TXT
Deep networks, especially convolutional neural networks (CNNs), have been successfully applied in various areas of machine learning as well as to challenging problems in other scientific and engineering fields. This paper introduces Butterfly-net, a low-complexity CNN with structured and sparse cross-channel connections, together with a Butterfly initialization strategy for a family of networks. Theoretical analysis of the approximation power of Butterfly-net to the Fourier representation of input data shows that the error decays exponentially as the depth increases. Combining Butterfly-net with a fully connected neural network, a large class of problems are proved to be well approximated with network complexity depending on the effective frequency bandwidth instead of the input dimension. Regular CNN is covered as a special case in our analysis. Numerical experiments validate the analytical results on the approximation of Fourier kernels and energy functionals of Poisson's equations. Moreover, all experiments support that training from Butterfly initialization outperforms training from random initialization. Also, adding the remaining cross-channel connections, although significantly increases the parameter number, does not much improve the post-training accuracy and is more sensitive to data distribution.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2020-0214}, url = {http://global-sci.org/intro/article_detail/cicp/18398.html} }Deep networks, especially convolutional neural networks (CNNs), have been successfully applied in various areas of machine learning as well as to challenging problems in other scientific and engineering fields. This paper introduces Butterfly-net, a low-complexity CNN with structured and sparse cross-channel connections, together with a Butterfly initialization strategy for a family of networks. Theoretical analysis of the approximation power of Butterfly-net to the Fourier representation of input data shows that the error decays exponentially as the depth increases. Combining Butterfly-net with a fully connected neural network, a large class of problems are proved to be well approximated with network complexity depending on the effective frequency bandwidth instead of the input dimension. Regular CNN is covered as a special case in our analysis. Numerical experiments validate the analytical results on the approximation of Fourier kernels and energy functionals of Poisson's equations. Moreover, all experiments support that training from Butterfly initialization outperforms training from random initialization. Also, adding the remaining cross-channel connections, although significantly increases the parameter number, does not much improve the post-training accuracy and is more sensitive to data distribution.