- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 1366-1388.
Published online: 2020-08
Cited by
- BibTex
- RIS
- TXT
The elastic transmission eigenvalue problem has important applications in the inverse elastic scattering theory. Recently, the numerical computation for this problem has attracted the attention of the researchers. In this paper, we propose the $H^2$-conforming methods including the classical $H^2$-conforming finite element method and the spectral element method, and establish the two-grid discretization scheme. Theoretical analysis and numerical experiments show that the methods presented in this paper can efficiently compute real and complex elastic transmission eigenvalues.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0171}, url = {http://global-sci.org/intro/article_detail/cicp/18103.html} }The elastic transmission eigenvalue problem has important applications in the inverse elastic scattering theory. Recently, the numerical computation for this problem has attracted the attention of the researchers. In this paper, we propose the $H^2$-conforming methods including the classical $H^2$-conforming finite element method and the spectral element method, and establish the two-grid discretization scheme. Theoretical analysis and numerical experiments show that the methods presented in this paper can efficiently compute real and complex elastic transmission eigenvalues.