- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 1305-1320.
Published online: 2020-08
Cited by
- BibTex
- RIS
- TXT
In this paper, the RSEL (Random Subfeature Ensemble Learning) algorithm is proposed to improve the forecast results of weather forecasting. Based on the classical machine learning algorithms, RSEL algorithm integrates random subfeature selection and ensemble learning combination strategy to enhance the diversity of the features and avoid the influence of a small number of unstable outliers generated randomly. Furthermore, the feature engineering schemes are designed for the weather forecast data to make full use of spatial or temporal context. RSEL algorithm is tested by forecasting the wind speed and direction, and it improves the forecast accuracy of traditional methods and has good robustness.
}, issn = {1991-7120}, doi = {https://doi.org/ 10.4208/cicp.OA-2020-0006}, url = {http://global-sci.org/intro/article_detail/cicp/18099.html} }In this paper, the RSEL (Random Subfeature Ensemble Learning) algorithm is proposed to improve the forecast results of weather forecasting. Based on the classical machine learning algorithms, RSEL algorithm integrates random subfeature selection and ensemble learning combination strategy to enhance the diversity of the features and avoid the influence of a small number of unstable outliers generated randomly. Furthermore, the feature engineering schemes are designed for the weather forecast data to make full use of spatial or temporal context. RSEL algorithm is tested by forecasting the wind speed and direction, and it improves the forecast accuracy of traditional methods and has good robustness.