- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 1189-1218.
Published online: 2020-07
Cited by
- BibTex
- RIS
- TXT
In this paper, a time implicit unified gas kinetic scheme (IUGKS) for 3D multi-group neutron transport equation with delayed neutron is developed. The explicit scheme, implicit 1st-order backward Euler scheme, and 2nd-order Crank-Nicholson scheme, become the subsets of the current IUGKS. In neutron transport, the microscopic angular flux and the macroscopic scalar flux are fully coupled in an implicit way with the combination of dual-time step technique for the convergence acceleration of unsteady evolution. In IUGKS, the computational time step is no longer limited by the Courant-Friedrichs-Lewy (CFL) condition, which improves the computational efficiency in both steady and unsteady simulations with a large time step. Mathematically, the current scheme has the asymptotic preserving (AP) property in recovering automatically the diffusion solution in the continuum regime. Since the explicit scanning along neutron traveling direction within the computational domain is not needed in IUGKS, the scheme can be easily extended to multi-dimensional and parallel computations. The numerical tests demonstrate that the IUGKS has high computational efficiency, high accuracy, and strong robustness when compared with other schemes, such as the explicit UGKS, the commonly used finite difference, and finite volume methods. This study shows that the IUGKS can be used faithfully to study neutron transport in practical engineering applications.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0050}, url = {http://global-sci.org/intro/article_detail/cicp/17691.html} }In this paper, a time implicit unified gas kinetic scheme (IUGKS) for 3D multi-group neutron transport equation with delayed neutron is developed. The explicit scheme, implicit 1st-order backward Euler scheme, and 2nd-order Crank-Nicholson scheme, become the subsets of the current IUGKS. In neutron transport, the microscopic angular flux and the macroscopic scalar flux are fully coupled in an implicit way with the combination of dual-time step technique for the convergence acceleration of unsteady evolution. In IUGKS, the computational time step is no longer limited by the Courant-Friedrichs-Lewy (CFL) condition, which improves the computational efficiency in both steady and unsteady simulations with a large time step. Mathematically, the current scheme has the asymptotic preserving (AP) property in recovering automatically the diffusion solution in the continuum regime. Since the explicit scanning along neutron traveling direction within the computational domain is not needed in IUGKS, the scheme can be easily extended to multi-dimensional and parallel computations. The numerical tests demonstrate that the IUGKS has high computational efficiency, high accuracy, and strong robustness when compared with other schemes, such as the explicit UGKS, the commonly used finite difference, and finite volume methods. This study shows that the IUGKS can be used faithfully to study neutron transport in practical engineering applications.