- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 1038-1084.
Published online: 2020-07
Cited by
- BibTex
- RIS
- TXT
Shallow Water Moment Equations allow for vertical changes in the horizontal velocity, so that complex shallow flows can be described accurately. However, we show that these models lack global hyperbolicity and the loss of hyperbolicity already occurs for small deviations from equilibrium. This leads to instabilities in a numerical test case. We then derive new Hyperbolic Shallow Water Moment Equations based on a modification of the system matrix. The model can be written in analytical form and hyperbolicity can be proven for a large number of equations. A second variant of this model is obtained by generalizing the modification with the help of additional parameters. Numerical tests of a smooth periodic problem and a dam break problem using the new models yield accurate and fast solutions while guaranteeing hyperbolicity.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0065}, url = {http://global-sci.org/intro/article_detail/cicp/17675.html} }Shallow Water Moment Equations allow for vertical changes in the horizontal velocity, so that complex shallow flows can be described accurately. However, we show that these models lack global hyperbolicity and the loss of hyperbolicity already occurs for small deviations from equilibrium. This leads to instabilities in a numerical test case. We then derive new Hyperbolic Shallow Water Moment Equations based on a modification of the system matrix. The model can be written in analytical form and hyperbolicity can be proven for a large number of equations. A second variant of this model is obtained by generalizing the modification with the help of additional parameters. Numerical tests of a smooth periodic problem and a dam break problem using the new models yield accurate and fast solutions while guaranteeing hyperbolicity.