- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 679-690.
Published online: 2020-06
Cited by
- BibTex
- RIS
- TXT
Chlorophyll in leaves is tightly associated with physiological status of plants. Chemical extraction or hyperspectral estimation is the conventional method to estimate the concentration of Chlorophyll in leaves. However, chemical extraction is invasive and time consuming, and hyperspectral method is extremely sensitive to background light. In this paper, we develop a quantitative photoacoustic imaging technique based on a finite-element-based reconstruction algorithm accelerated by a multicore GPU card to image morphological features and derive distribution of Chlorophyll A in rice leaves. The results suggest that this new method holds great potential in various studies of plant physiology.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2017-0248}, url = {http://global-sci.org/intro/article_detail/cicp/16949.html} }Chlorophyll in leaves is tightly associated with physiological status of plants. Chemical extraction or hyperspectral estimation is the conventional method to estimate the concentration of Chlorophyll in leaves. However, chemical extraction is invasive and time consuming, and hyperspectral method is extremely sensitive to background light. In this paper, we develop a quantitative photoacoustic imaging technique based on a finite-element-based reconstruction algorithm accelerated by a multicore GPU card to image morphological features and derive distribution of Chlorophyll A in rice leaves. The results suggest that this new method holds great potential in various studies of plant physiology.