- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 591-620.
Published online: 2020-06
Cited by
- BibTex
- RIS
- TXT
We present an implicit-explicit finite volume scheme for the Euler equations. We start from the non-dimensionalised Euler equations where we split the pressure in a slow and a fast acoustic part. We use a Suliciu type relaxation model which we split in an explicit part, solved using a Godunov-type scheme based on an approximate Riemann solver, and an implicit part where we solve an elliptic equation for the fast pressure. The relaxation source terms are treated projecting the solution on the equilibrium manifold. The proposed scheme is positivity preserving with respect to the density and internal energy and asymptotic preserving towards the incompressible Euler equations. For this first order scheme we give a second order extension which maintains the positivity property. We perform numerical experiments in 1D and 2D to show the applicability of the proposed splitting and give convergence results for the second order extension.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0123}, url = {http://global-sci.org/intro/article_detail/cicp/16942.html} }We present an implicit-explicit finite volume scheme for the Euler equations. We start from the non-dimensionalised Euler equations where we split the pressure in a slow and a fast acoustic part. We use a Suliciu type relaxation model which we split in an explicit part, solved using a Godunov-type scheme based on an approximate Riemann solver, and an implicit part where we solve an elliptic equation for the fast pressure. The relaxation source terms are treated projecting the solution on the equilibrium manifold. The proposed scheme is positivity preserving with respect to the density and internal energy and asymptotic preserving towards the incompressible Euler equations. For this first order scheme we give a second order extension which maintains the positivity property. We perform numerical experiments in 1D and 2D to show the applicability of the proposed splitting and give convergence results for the second order extension.