- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 28 (2020), pp. 41-73.
Published online: 2020-05
Cited by
- BibTex
- RIS
- TXT
Strong-scattering inversion or the inverse problem for strong scattering has different physical-mathematical foundations from the weak-scattering case. Seismic inversion based on wave equation for strong scattering cannot be directly solved by Newton's local optimization method which is based on weak-nonlinear assumption. Here I try to illustrate the connection between the Schrödinger inverse scattering (inverse problem for Schrödinger equation) by GLM (Gel'fand-Levitan-Marchenko) theory and the direct envelope inversion (DEI) using reflection data. The difference between wave equation and Schrödinger equation is that the latter has a potential independent of frequency while the former has a frequency-square dependency in the potential. I also point out that the traditional GLM equation for potential inversion can only recover the high-wavenumber components of impedance profile. I propose to use the Schrödinger impedance equation for direct impedance inversion and introduce a singular impedance function which also corresponds to a singular potential for the reconstruction of impedance profile, including discontinuities and long-wavelength velocity structure. I will review the GLM theory and its application to impedance inversion including some numerical examples. Then I analyze the recently developed multiscale direct envelope inversion (MS-DEI) and its connection to the inverse Schrödinger scattering. It is conceivable that the combination of strong-scattering inversion (inverse Schrödinger scattering) and weak-scattering inversion (local optimization based inversion) may create some inversion methods working for a whole range of inversion problems in geophysical exploration.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2018-0108}, url = {http://global-sci.org/intro/article_detail/cicp/16826.html} }Strong-scattering inversion or the inverse problem for strong scattering has different physical-mathematical foundations from the weak-scattering case. Seismic inversion based on wave equation for strong scattering cannot be directly solved by Newton's local optimization method which is based on weak-nonlinear assumption. Here I try to illustrate the connection between the Schrödinger inverse scattering (inverse problem for Schrödinger equation) by GLM (Gel'fand-Levitan-Marchenko) theory and the direct envelope inversion (DEI) using reflection data. The difference between wave equation and Schrödinger equation is that the latter has a potential independent of frequency while the former has a frequency-square dependency in the potential. I also point out that the traditional GLM equation for potential inversion can only recover the high-wavenumber components of impedance profile. I propose to use the Schrödinger impedance equation for direct impedance inversion and introduce a singular impedance function which also corresponds to a singular potential for the reconstruction of impedance profile, including discontinuities and long-wavelength velocity structure. I will review the GLM theory and its application to impedance inversion including some numerical examples. Then I analyze the recently developed multiscale direct envelope inversion (MS-DEI) and its connection to the inverse Schrödinger scattering. It is conceivable that the combination of strong-scattering inversion (inverse Schrödinger scattering) and weak-scattering inversion (local optimization based inversion) may create some inversion methods working for a whole range of inversion problems in geophysical exploration.