- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 1413-1442.
Published online: 2020-03
Cited by
- BibTex
- RIS
- TXT
We present an efficient and conservative Eulerian-Lagrangian method for solving two-dimensional hydrostatic multilayer shallow water flows with mass exchange between the vertical layers. The method consists of a projection finite volume method for the Eulerian stage and a method of characteristics to approximate the numerical fluxes for the Lagrangian stage. The proposed method is simple to implement, satisfies the conservation property and it can be used for multilayer shallow water equations on non-flat bathymetry including eddy viscosity and Coriolis forces. It offers a novel method of calculating stratified vertical velocities without the use of the Navier-Stokes equations. Numerical results are presented for several examples and the obtained results for a free-surface flow problem are in close agreement with the analytical solutions. We also test the performance of the proposed method for a test example of wind-driven flows with recirculation
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0036}, url = {http://global-sci.org/intro/article_detail/cicp/15775.html} }We present an efficient and conservative Eulerian-Lagrangian method for solving two-dimensional hydrostatic multilayer shallow water flows with mass exchange between the vertical layers. The method consists of a projection finite volume method for the Eulerian stage and a method of characteristics to approximate the numerical fluxes for the Lagrangian stage. The proposed method is simple to implement, satisfies the conservation property and it can be used for multilayer shallow water equations on non-flat bathymetry including eddy viscosity and Coriolis forces. It offers a novel method of calculating stratified vertical velocities without the use of the Navier-Stokes equations. Numerical results are presented for several examples and the obtained results for a free-surface flow problem are in close agreement with the analytical solutions. We also test the performance of the proposed method for a test example of wind-driven flows with recirculation