- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 1344-1377.
Published online: 2020-03
Cited by
- BibTex
- RIS
- TXT
We study the mechanism of the gauge cooling technique to stabilize the complex Langevin method in the one-dimensional periodic setting. In this case, we find the exact solutions for the gauge transform which minimizes the Frobenius norm of link variables. Thereby, we derive the underlying stochastic differential equations by continuing the numerical method with gauge cooling, and thus provide a number of insights on the effects of gauge cooling. A specific case study is carried out for the Polyakov loop model in SU(2) theory, in which we show that the gauge cooling may help form a localized distribution to guarantee there is no excursion too far away from the real axis.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0126}, url = {http://global-sci.org/intro/article_detail/cicp/15773.html} }We study the mechanism of the gauge cooling technique to stabilize the complex Langevin method in the one-dimensional periodic setting. In this case, we find the exact solutions for the gauge transform which minimizes the Frobenius norm of link variables. Thereby, we derive the underlying stochastic differential equations by continuing the numerical method with gauge cooling, and thus provide a number of insights on the effects of gauge cooling. A specific case study is carried out for the Polyakov loop model in SU(2) theory, in which we show that the gauge cooling may help form a localized distribution to guarantee there is no excursion too far away from the real axis.