- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 1443-1469.
Published online: 2020-03
Cited by
- BibTex
- RIS
- TXT
In this paper, we study the multiscale computations for the Maxwell– Schrödinger system with rapidly oscillating coefficients under the dipole approximation that describes light-matter interaction in heterogeneous nanostructures. The multiscale asymptotic method and an associated numerical algorithm for the system are presented. We propose an alternating Crank–Nicolson finite element method for solving the homogenized Maxwell–Schödinger system and prove the existence of solutions to the discrete system. Numerical examples are given to validate the efficiency and accuracy of the algorithm.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.OA-2019-0004}, url = {http://global-sci.org/intro/article_detail/cicp/15770.html} }In this paper, we study the multiscale computations for the Maxwell– Schrödinger system with rapidly oscillating coefficients under the dipole approximation that describes light-matter interaction in heterogeneous nanostructures. The multiscale asymptotic method and an associated numerical algorithm for the system are presented. We propose an alternating Crank–Nicolson finite element method for solving the homogenized Maxwell–Schödinger system and prove the existence of solutions to the discrete system. Numerical examples are given to validate the efficiency and accuracy of the algorithm.