- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 27 (2020), pp. 1530-1549.
Published online: 2020-03
Cited by
- BibTex
- RIS
- TXT
Radial basis function (RBF) collocation methods (RBFCMs) are applied to fourth order boundary value problems (BVPs). In particular, we consider the classical Kansa method and the method of approximate particular solutions (MAPS). In the proposed approach we include some so-called ghost points which are located inside and outside the domain of the problem. The inclusion of these points is shown to improve the accuracy and the stability of the collocation methods. An appropriate value of the shape parameter in the RBFs used is obtained using either the leave-one-out cross validation (LOOCV) algorithm or Franke's formula. We present and analyze the results of several numerical tests.
}, issn = {1991-7120}, doi = {https://doi.org/ 10.4208/cicp.OA-2019-0163}, url = {http://global-sci.org/intro/article_detail/cicp/15768.html} }Radial basis function (RBF) collocation methods (RBFCMs) are applied to fourth order boundary value problems (BVPs). In particular, we consider the classical Kansa method and the method of approximate particular solutions (MAPS). In the proposed approach we include some so-called ghost points which are located inside and outside the domain of the problem. The inclusion of these points is shown to improve the accuracy and the stability of the collocation methods. An appropriate value of the shape parameter in the RBFs used is obtained using either the leave-one-out cross validation (LOOCV) algorithm or Franke's formula. We present and analyze the results of several numerical tests.